A Parameter-self-adjusting Levenberg-marquardt Method for Solving Nonsmooth Equations

نویسندگان

  • Liyan Qi
  • Xiantao Xiao
  • Liwei Zhang
  • L. W. ZHANG
چکیده

A parameter-self-adjusting Levenberg-Marquardt method (PSA-LMM) is proposed for solving a nonlinear system of equations F (x) = 0, where F : R → R is a semismooth mapping. At each iteration, the LM parameter μk is automatically adjusted based on the ratio between actual reduction and predicted reduction. The global convergence of PSALMM for solving semismooth equations is demonstrated. Under the BD-regular condition, we prove that PSA-LMM is locally superlinearly convergent for semismooth equations and locally quadratically convergent for strongly semismooth equations. Numerical results for solving nonlinear complementarity problems are presented. Mathematics subject classification: 65K05, 90C30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Levenberg-Marquardt Method for Nonsmooth Equations with Finitely Many Maximum Functions

For solving nonsmooth systems of equations, the Levenberg-Marquardt method and its variants are of particular importance because of their locally fast convergent rates. Finitely manymaximum functions systems are very useful in the study of nonlinear complementarity problems, variational inequality problems, Karush-Kuhn-Tucker systems of nonlinear programming problems, and many problems in mecha...

متن کامل

Nonsmooth Levenberg-Marquardt Type Method for Solving a Class of Stochastic Linear Complementarity Problems with Finitely Many Elements

Abstract: Our purpose of this paper is to solve a class of stochastic linear complementarity problems (SLCP) with finitely many elements. Based on a new stochastic linear complementarity problem function, a new semi-smooth least squares reformulation of the stochastic linear complementarity problem is introduced. For solving the semi-smooth least squares reformulation, we propose a feasible non...

متن کامل

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

Local convergence of Levenberg–Marquardt methods under Hölder metric subregularity

We describe and analyse Levenberg–Marquardt methods for solving systems of nonlinear equations. More specifically, we first propose an adaptive formula for the Levenberg–Marquardt parameter and analyse the local convergence of the method under Hölder metric subregularity. We then introduce a bounded version of the Levenberg–Marquardt parameter and analyse the local convergence of the modified m...

متن کامل

Levenberg-Marquardt Method for the Eigenvalue Complementarity Problem

The eigenvalue complementarity problem (EiCP) is a kind of very useful model, which is widely used in the study of many problems in mechanics, engineering, and economics. The EiCP was shown to be equivalent to a special nonlinear complementarity problem or a mathematical programming problem with complementarity constraints. The existing methods for solving the EiCP are all nonsmooth methods, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016